
CMPS 12B – Program 3
Winter 2018
Due: Tuesday February 6 @ 11:59pm

The goal of this project is to implement a Dictionary ADT in Java based on the linked list data structure.
The elements of the Dictionary will be pairs of Strings called key and value respectively. Keys will be
distinct, whereas values may be repeated. Thus any two (key, value) pairs must have different keys,
but may possibly have identical values. You can think of a key as being an account number, and a
value as say an account balance, both represented by Strings. Recall that an ADT consists of two
things: (1) a collection of states, and (2) a collection of operations that act on states. In the Dictionary
ADT a state is simply a finite set of (key, value) pairs. There are seven ADT operations to be
implemented by the methods below.

public boolean isEmpty()
Returns true if the Dictionary contains no pairs, false otherwise.

public int size()
Returns the number of (key, value) pairs in the Dictionary.

public String lookup(String key)
If the Dictionary contains a pair whose key field matches the argument key, lookup returns the
associated value field. If no such pair exists in the Dictionary, a null reference is returned.

public void insert(String key, String value)
If the Dictionary does not currently contain a pair whose key matches the argument key, then the pair
(key, value) is added to the Dictionary. If such a pair does exist, a DuplicateKeyException will be
thrown with the message: "cannot insert duplicate keys". Thus insert() has the
precondition that the Dictionary does not currently contain the argument key. This precondition can be
tested by the client module by doing lookup(key)==null.

public void delete(String key)
If the Dictionary currently contains a pair whose key field matches the argument key, then that pair is
removed from the Dictionary. If no such pair exists, then a KeyNotFoundException is thrown with
the message: "cannot delete non-existent key". Thus delete() has the precondition that the
Dictionary currently contains the argument key. This precondition can be tested by the client module by
doing lookup(key)!=null.

public void makeEmpty()
Resets the Dictionary to the empty state.

public String toString()
Returns a String representation of the current state of the Dictionary. Keys will be separated from
values by a single space, and consecutive pairs will be separated by newline characters. The return
String will be terminated by a newline character. Pairs will occur in the return String in the same order
they were inserted into the Dictionary.

Implementation of the Dictionary ADT
An interface file for the Dictionary ADT (DictionaryInterface.java) with prototypes for the above
methods will be provided on the class webpage. The implementation file for the Dictionary ADT, which
you will write, will be called Dictionary.java. In it you will define the Dictionary class and explicitly
implement the interface, i.e. the class heading will be:

public class Dictionary implements DictionaryInterface

You will turn in the interface file with your project, but you are not to alter the contents of that file in any
way (don't even put in the customary comment block with your name). In addition to the implementation
file you will also write files DuplicateKeyException.java and KeyNotFoundException.java
which define the two types of exception classes to be thrown. Make both of these exceptions to be
subclasses of RuntimeException, and follow the examples given in lecture and on the webpage.

Your implementation of the Dictionary ADT will utilize a linked list data structure. The linked list may be
any of the variations discussed in class (e.g. singly linked with head reference, singly linked with both
head and tail reference, circular, doubly linked, with or without dummy node(s), or any combination of
the preceding types.) It is recommended that you take the linked list representation of the IntegerList
ADT as a starting point for this project. Just rename that file and start making changes to it. In particular
your Node class must be a private inner class to the Dictionary class. However, your Node class will
no longer contain an int field since the data stored at each node will be a pair of Strings.

You have two options for storing pairs. One option is to let the Dictionary class contain another private
inner class called Pair encapsulating the two Strings in fields called key and value respectively. The
data field in your Node will then be of type Pair. The second (simpler and recommended) option is to
define your Node class to contain two String fields instead of a single data field. State which option you
are using in your README file. It is recommended that your Dictionary class contain a private method
with the following heading.

private Node findKey(String key)

This method should return a reference to the Node containing its argument key, or return null if no
such Node exists. Such a method will be helpful in implementing the methods insert(), delete()
and lookup().

Testing
Create another file called DictionaryTest.java whose purpose is to serve as a test client for the
Dictionary ADT while it is under construction. This file will define the class DictionaryTest, which
need not contain any more than a main() method (although you may add other static methods at your
discretion.) The design philosophy here is that an ADT should be thoroughly tested in isolation before it
is used in any application. Build your Dictionary ADT one method at a time, calling each operation from
within DictionaryTest.java to wring out any bugs before going on to the next method. The idea is
to add functionality to the Dictionary in small bits, compiling and testing as you go. This way you are
never very far from having something that compiles, and errors that arise are likely to be confined to
recently written code. You will submit the file DictionaryTest.java with this project. It is expected
that it will change significantly during the testing phases of your project. As that happens, comment out
the old test code as you insert tests of more recently written operations. The final version of
DictionaryTest.java should contain enough test code (possibly all in comments) to convince the
grader that you did in fact test your ADT in isolation before proceeding.

Once you believe all ADT operations are working properly, copy the files DictionaryClient.java
and Makefile to your working directory (both provided on the webpage). At this point %make will
create an executable jar file in your working directory called DictionaryClient. This program will
have the following output. (Recall that % here represents the Unix prompt.)

%DictionaryClient
1 a
2 b
3 c
4 d
5 e
6 f
7 g

key=1 value=a
key=3 value=c
key=7 value=g
key=8 not found

2 b
4 d
5 e
6 f

false
4
true

%

If your Dictionary ADT behaves according to specs, your output should look exactly as above. You can
check this by doing % DictionaryClient > out, copy the file model-out from the webpage to
your working directory, then do % diff out model-out. If diff gives no output, then the files are
exactly the same, which is good. Note the unix operator > redirects program output to a file. In other
words it associates the data stream stdout with the file on its right hand side, instead of the screen.
Similarly the unix operator < associates the file on its right hand side with the data stream stdin,
instead of the keyboard. See the man pages for a description of the diff command.

What to turn in
You may alter the provided Makefile to include submit and test utilities, or alter it in any other way
you see fit, as long as it creates an executable jar file called DictionaryClient, and includes a
clean utility. Do not however alter the files DictionaryInterface.java or
DictionaryClient.java. Thus you will submit eight files in all in your zip file called program3.zip in
Canvas. Please note that you will be deducted an automatic 3 points from your assignment if your zip
file is named something other than program3.zip – alternate names have a tendency of causing
problems during grading.

README table of contents, notes to grader
Dictionary.java created by you
DictionaryTest.java created by you
DuplicateKeyException.java created by you
KeyNotFoundException.java created by you
DictionaryInterface.java unchanged
DictionaryClient.java unchanged
Makefile alter at your discretion

As always, start early and ask plenty of questions.

