
CMPS 12B – Program 5
Winter 2018
Due: March 16 @ 11:59pm

In this project you will recreate the Dictionary ADT from pa3 and lab5, again in C but now based on a
hash table instead of a linked list. Start by reading the section 13.2 on hash tables in the textbook (pages
695 through 719.)

So far we have seen two data structures that can form the basis of a Dictionary ADT, namely linked lists
and binary search trees. In the linked list implementation, the worst case run time of the essential
Dictionary operations (insert, delete, and lookup) were all in Θ(n), where n is the number of pairs in the
dictionary. In the binary search tree implementation, the Dictionary operations all run in time Θ(log(n)),
provided that the underlying binary search tree is “balanced”. It is possible to do better still using a hash
table as the underlying data structure. In this implementation the Dictionary operations will run in
constant time Θ(1). The catch is that this is the average case run time. The worst case run time of the
Dictionary operations in a hash table implementation can be as bad as Θ(n), the time for a linked list.

Hash Tables
A hash table is simply an array that is used to store data associated with a set of keys. In our Dictionary
ADT we wish to store a set of (key, value) pairs where key and value are C strings (i.e. null '\0'
terminated char arrays). To simplify our discussion we will suppose for the moment that the keys are
integers rather than strings. Actually it is not difficult to turn a string into an integer. Appropriate functions
for doing this will be provided on the class webpage.

If the keys all happen to be in the range 0 to N – 1 , and N is not too large, one can simply allocate an
array of length N, and store the value v in array index k. This arrangement is called a direct-address
table. Accessing a pair (k, v) then has constant cost. The difficulty with direct addressing is obvious: if N
too is large, allocating an array of length N may be impractical, or even impossible. Think of an
application in which key is an account number and value is an account balance. Such applications
often have account numbers consisting of 15 or more decimal digits, which makes the universe U of all
possible keys very large. Furthermore the set S of keys actually used may be so small relative to U that
most of the space allocated for the array would be wasted. In the case of account numbers of 15 decimal
digits, that is a universe of possible keys on the order or one quadrillion. That's a very long array, and
even if everyone on the planet has an account, over 99% of the space is unused.

A hash table T requires much less storage than a direct address table. Specifically the storage
requirements for a hash table can be reduced to Θ(| S |) , while maintaining the benefit that the
dictionary operations run in (average case) constant time Θ(1) . To do this we use a hash function h to
compute the index (or slot) h(k) where a given pair (k,v) will be stored. A suitable hash function must
map the universe U of possible keys to the set {0, 1, … , m–1 } of array indices:

h :U → {0,1, ... , m -1}

We say that the pair (k,v) hashes to the slot h(k) in the hash table T[0...(m-1)] , and that h(k) is the hash
value of key k. The point of the hash function is to reduce the range of array indices that must be
handled. Instead of | U | indices, we need handle only m indices. Storage requirements are thereby
reduced.

There is of course one problem: two keys may hash to the same slot. We call this situation a collision.
Fortunately, there are effective techniques for resolving the conflict created by collisions. The ideal
solution would be to avoid collisions altogether. We might try to achieve this goal through our choice of
hash function h. One possibility is to make h appear to be random, thus avoiding collisions by making
them improbable. The very term "hash", which evokes images of random mixing and chopping, captures
the spirit of this approach. Of course, a hash function h must be deterministic in the sense that a given

input k always produces the same output h(k) . Since | U | > m , and in general | U | is much larger than
m, there must be at least two keys that have the same hash value, and therefore avoiding collisions
altogether is impossible. Thus, while a well designed random looking hash function can minimize the
number of collisions, we still need a method for resolving the collisions that do occur.

Several methods for resolving collisions will be discussed in class. The method that we will use in this
project is called chaining, and is perhaps the simplest collision resolution technique. In chaining, we put
all the pairs that hash to the same slot into a linked list. Thus the hash table T[0...(m–1)] is an array of
linked lists. More precisely, T[j] is a pointer to the head of a linked list storing all pairs that hash to slot j.
If there are no such elements, T[j] will be NULL. The Dictionary ADT operations on a hash table T are
easy to implement when collisions are resolved by chaining. To insert a pair (k,v) into the Dictionary, we
create a new Node storing this pair, then insert that Node at the head of the linked list T[h(k)] . To lookup
a given key k, we do a linear search of the list T[h(k)] , and return the corresponding value if found, or
NULL if not found. To delete the pair with key k, simply splice the corresponding Node out of the list
headed by T[h(k)]. The remaining Dictionary operations are equally simple and are left to the student to
design.

At this point the only question left is what to choose as our hash function h. A good hash function should
satisfy (at least approximately) the assumption of simple uniform hashing: each key is equally likely to
hash to any of the m slots, independently of the slot to which any other key has hashed. Unfortunately, it
is often not possible to check this condition in practice, since one may not know the probability
distribution on the universe U from which the keys are drawn. Furthermore the keys may not be drawn
independently from U, i.e. the next key used may depend (probabilistically) on the previous key.

In this project U will be the set of non-negative integers up to the maximum value of the unsigned int
data type in C (typically 232 – 1 in most implementations.) We will assume that keys are uniformly
distributed over this universe. (We will try to enforce this assumption, at least approximately, by the way
we turn strings into unsigned ints.) Under these conditions the function

h(k) = k mod m

satisfies the simple uniform hashing condition. Here m is the length of the hash table T, and mod
denotes the remainder operation, i.e. h(k) is simply the remainder of k upon division by m. Note that this
quantity necessarily lies in the range from 0 to m–1 , as required. Other possible hash functions with their
pros and cons, will be discussed in class. It is suggested that your Dictionary.c file contain a private
constant integer

const int tableSize=101; // or some prime other than 101

establishing the length of the hash table array. The choice here of length 101 is somewhat arbitrary, and
should be changed during testing of your project. In particular, you should see how your Dictionary ADT
performs with small table lengths, i.e. no more than half the number of pairs in the Dictionary, so that
collisions are guaranteed. You will include the following functions unaltered in your Dictionary.c file.

// rotate_left()
// rotate the bits in an unsigned int
unsigned int rotate_left(unsigned int value, int shift) {
 int sizeInBits = 8*sizeof(unsigned int);
 shift = shift & (sizeInBits - 1);
 if (shift == 0)
 return value;
 return (value << shift) | (value >> (sizeInBits - shift));
}
// pre_hash()

// turn a string into an unsigned int
unsigned int pre_hash(char* input) {
 unsigned int result = 0xBAE86554;
 while (*input) {
 result ^= *input++;
 result = rotate_left(result, 5);
 }
 return result;
}
// hash()
// turns a string into an int in the range 0 to tableSize-1
int hash(char* key){
 return pre_hash(key)%tableSize;
}

Functions rotate_left() and pre_hash() turn a string into an unsigned int, and function
hash() converts that number into an int in the range 0 to tableSize–1 . We will discuss the operational
details of these functions in class, but try to figure out how they work on your own by consulting the usual
sources (Google, stack-overflow, http://www.acm.uiuc.edu/webmonkeys/book/c_guide/).

These functions are used to compute the array index hash(k) in which a pair with key k is stored. The
header file for this project is identical to that found in lab5 and also to that of the BST based Dictionary
discussed in lecture. There is however one ADT operation whose requirements are relaxed from those in
lab5, namely the printDictionary() function. Recall that in pa3 and therefore also in lab5, a text
representation of a Dictionary was required to present (key, value) pairs in the order that they were
originally inserted into the Dictionary. This was easy and natural for the linked list representation since
the list itself maintained the insertion order. Your printDictionary() function in this project should
just print out pairs in the order that they appear in the table, i.e. print out list T[0] in order (i.e. head to
tail), then list T[1] , ..., then end by printing list T[m–1].

What to Turn In
Write the implementation file Dictionary.c as described above based on a hash table data structure.
Also write your own set of test procedures in a file called DictionaryTest.c. The webpage will
include files Dictionary.h and DictionaryClient.c, which you should submit unaltered with your
project. Note that DictionaryClient.c provided here is the same as that in lab3, but the output is
slightly different due to the difference in function printDictionary(). Correct output for the program
DictionaryClient will also be included on the webpage. In addition, another more complicated test
program called DictionaryClient2.c and its output will also be included on the webpage. This
program is included for testing only and need not be submitted. Note if you change tableSize to
something other than 101 you will get different output for printDictionary() but the lookups and
deletes will give the same results.

A Makefile will also be provided which you may alter as needed. To receive full credit, your project must
compile without errors or warnings, produce correct output, and cause no memory leaks when run under
valgrind. Submit the files:

README
Dictionary.c
Dictionary.h
DictionaryTest.c
DictionaryClient.c
Makefile

In a zip file to the assignment name program 5. As always start early and ask plenty of questions.

